15,546 research outputs found

    The circumferentially notched cylindrical bar as a fracture toughness test specimen

    Get PDF
    A brief review is given of the application of the notched cylinder as a screening specimen for use in sorting materials in respect to their relative levels of plane strain fracture toughness and a discussion of fracture mechanics applications including Irwin's important contributions in this area. In addition, practical problems encountered in application of this specimen will be presented

    Estimation of Ksub Ic from slow bend precracked Charpy specimen strength ratios

    Get PDF
    Strength ratios are reported which were derived from slow bend tests on 0.25 inch thick precracked Charpy specimens of steels, aluminum alloys, and a titanium alloy for which valid K sub Ic values were established. The strength ratios were used to develop calibration curves typical of those that could be useful in estimating K sub Ic for the purposes of alloy development of quality control

    Survey of fracture toughness test methods

    Get PDF
    Comprehensive survey presents current methods of fracture toughness testing that are based on linear elastic fracture mechanics. General principles of the basic two dimensional crack stress field model are discussed in relation to real three dimensional specimens. Methods of test instrumentation and procedure are described

    Quasilocal Energy for a Kerr black hole

    Get PDF
    The quasilocal energy associated with a constant stationary time slice of the Kerr spacetime is presented. The calculations are based on a recent proposal \cite{by} in which quasilocal energy is derived from the Hamiltonian of spatially bounded gravitational systems. Three different classes of boundary surfaces for the Kerr slice are considered (constant radius surfaces, round spheres, and the ergosurface). Their embeddings in both the Kerr slice and flat three-dimensional space (required as a normalization of the energy) are analyzed. The energy contained within each surface is explicitly calculated in the slow rotation regime and its properties discussed in detail. The energy is a positive, monotonically decreasing function of the boundary surface radius. It approaches the Arnowitt-Deser-Misner (ADM) mass at spatial infinity and reduces to (twice) the irreducible mass at the horizon of the Kerr black hole. The expressions possess the correct static limit and include negative contributions due to gravitational binding. The energy at the ergosurface is compared with the energies at other surfaces. Finally, the difficulties involved in an estimation of the energy in the fast rotation regime are discussed.Comment: 22 pages, Revtex, Alberta-Thy-18-94. (the approximations in Section IV have been improved. To appear in Phys. Rev. D

    Development of Replacement Heifers using Combinations of Three Forage Types and Feed Supplements (with or without Broiler Litter)

    Get PDF
    The proper management of replacement heifers is an essential component of successful cow/calf operations. The level of management and nutrition applied to replacement heifers as calves and yearlings can impact their subsequent reproductive performance and productivity

    Dynamic Behavior of Soils From Field and Laboratory Tests

    Get PDF
    Both geophysical and laboratory tests were used to determine the dynamic shear moduli of medium stiff to hard clays and silts at six sites. The geophysical measurements included conventional downhole tests conducted at low strain levels and modified cross-hole impulse tests conducted over a wide range of strains. Laboratory resonant column and cyclic triaxial tests were performed on soil samples retrieved from borings made at the sites. The results from both the field and laboratory tests of the medium stiff to stiff sols showed fairly good agreement. The laboratory test results of the hard clays and silts, however, were typically half the values of the field tests at corresponding strain levels. This would suggest the need for adjusting the laboratory results performed on hard cohesive soils. Also, the field test results suggest that as soil stiffness increases, the modulus attenuation rate with strain decreases

    Analytical study of a free-wing/free-trimmer concept

    Get PDF
    The free-wing/free-trimmer is a NASA-Conceived extension of the free-wing concept intended to permit the use of high-lift flaps. Wing pitching moments are balanced by a smaller, external surface attached by a boom or equivalent structure. The external trimmer is, itself, a miniature free wing, and pitch control of the wing-trimmer assembly is effected through a trailing-edge control tab on the trimmer surface. The longitudinal behavior of representative small free-wing/free-trimmer aircraft was analyzed. Aft-mounted trimmer surfaces are found to be superior to forward trimmers, although the permissible trimmer moment arm is limited, in both cases, by adverse dynamic effects. Aft-trimmer configurations provide excellent gust alleviation and meet fundamental stick-fixed stability criteria while exceeding the lift capabilities of pure free-wing configurations

    Thermally activated escape rates of uniaxial spin systems with transverse field

    Full text link
    Classical escape rates of uniaxial spin systems are characterized by a prefactor differing from and much smaller than that of the particle problem, since the maximum of the spin energy is attained everywhere on the line of constant latitude: theta=const, 0 =< phi =< 2*pi. If a transverse field is applied, a saddle point of the energy is formed, and high, moderate, and low damping regimes (similar to those for particles) appear. Here we present the first analytical and numerical study of crossovers between the uniaxial and other regimes for spin systems. It is shown that there is one HD-Uniaxial crossover, whereas at low damping the uniaxial and LD regimes are separated by two crossovers.Comment: 4 PR pages, 3 figures, final published versio

    Spin Transfer Torque for Continuously Variable Magnetization

    Full text link
    We report quantum and semi-classical calculations of spin current and spin-transfer torque in a free-electron Stoner model for systems where the magnetization varies continuously in one dimension.Analytic results are obtained for an infinite spin spiral and numerical results are obtained for realistic domain wall profiles. The adiabatic limit describes conduction electron spins that follow the sum of the exchange field and an effective, velocity-dependent field produced by the gradient of the magnetization in the wall. Non-adiabatic effects arise for short domain walls but their magnitude decreases exponentially as the wall width increases. Our results cast doubt on the existence of a recently proposed non-adiabatic contribution to the spin-transfer torque due to spin flip scattering.Comment: 11 pages, 9 figure
    • …
    corecore